ANATOMY & PHYSIOLOGY

- Anatomy
 - Greek translation → A Cutting Open
 - Study of the internal and external **STRUCTURE** of the body and the physical relationships among body parts
 - **FORM**

- Physiology
 - also Greek
 - Study of how organisms perform their vital functions
 - **FUNCTION**
MACROSCOPIC ANATOMY

- Macroscopic Anatomy
 - Large structures visible with the unaided eye
- Surface Anatomy
 - Study of superficial markings
- Regional Anatomy
 - Organization of specific areas of the body, such as head, neck, or trunk
- Systemic Anatomy
 - Study of the structure of entire organ systems, such as the skeletal system or the muscular system
 - Human body has 11 organ systems
MACROSCOPIC ANATOMY

- Developmental Anatomy
 - The changes in form that occur during the period between conception and physical maturity
 - The most extensive structural changes occur during the first two months of development is called embryology

- Medical Anatomy
 - Anatomical features that change during illness

- Radiographic Anatomy
 - Structures seen by imaging techniques

- Surgical Anatomy
 - Anatomical landmarks important in surgery
MICROSCOPIC ANATOMY

• Microscopic Anatomy
 • Structures that cannot be seen without magnification
 • Boundaries are established by the limits of the equipment used
 • Includes two major subdivisions:
 • Cytology
 • Analysis of the structure of individual CELLS
 • Histology
 • The examination of TISSUES
 • Tissues are groups of specialized cells and cell products that work together to perform specific functions
PHYSIOLOGY

- Human Physiology
 - Study of the functions of the human body

- Cell Physiology
 - Study of the functions of cells organization and control mechanisms of cells and tissues

- Special Physiology
 - Study of the physiology of specific organs

- Systemic Physiology
 - Functioning of specific organ systems

- Pathological Physiology
 - Study of the effects of diseases on organ or organ functions
 - Pathos → Greek for Disease
GENERAL ORGANIZATION OF THE BODY

- Axial Position
 - Head, neck, trunk
- Appendicular Portion
 - Arms & legs

1. Several body cavities
2. Layers of membranes within cavities
3. Variety of organs and organ systems within cavities

VISCERA = internal organs
“Visceral Organs”
BODY REGIONS

Abdominal
Axillary
Brachial
Antebrachial
Carpal
Digital
Cephalic
Cervical

Inguinal
Pelvic
Pubic
Thoracic
Gluteal
Lumbar
Occipital
DIRECTIONAL TERMS

- Superior → toward the head
- Inferior → toward the feet
- Anterior/Ventral → front
- Posterior/Dorsal → back
- Medial → toward the midline
- Lateral → toward the side/away from the midline
- Proximal → toward or nearest the trunk or point of origin
- Distal → away from or farthest from trunk or point of origin
- Superficial → nearest the surface
- Deep → farthest away from the surface
TABLE 1-3 DIRECTIONAL TERMS (SEE FIGURE 1-9)

<table>
<thead>
<tr>
<th>Term</th>
<th>Region or Reference</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>The front; before</td>
<td>The navel is on the anterior surface of the trunk.</td>
</tr>
<tr>
<td>Ventral</td>
<td>The belly side (equivalent to anterior when referring to human body)</td>
<td>The navel is on the ventral surface.</td>
</tr>
<tr>
<td>Posterior</td>
<td>The back; behind</td>
<td>The shoulder blade is located posterior to the rib cage.</td>
</tr>
<tr>
<td>Dorsal</td>
<td>The back (equivalent to posterior when referring to human body)</td>
<td>The dorsal body cavity encloses the brain and spinal cord.</td>
</tr>
<tr>
<td>Cranial or cephalic</td>
<td>The head</td>
<td>The cranial, or cephalic, border of the pelvis is on the side toward the head rather than toward the thigh.</td>
</tr>
<tr>
<td>Superior</td>
<td>Above; at a higher level (in human body, toward the head)</td>
<td>In humans, the cranial border of the pelvis is superior to the thigh.</td>
</tr>
<tr>
<td>Caudal</td>
<td>The tail (coccyx in humans)</td>
<td>The hips are caudal to the waist.</td>
</tr>
<tr>
<td>Inferior</td>
<td>Below; at a lower level</td>
<td>The knees are inferior to the hips.</td>
</tr>
<tr>
<td>Medial</td>
<td>Toward the body's longitudinal axis; toward the midsagittal plane</td>
<td>The medial surfaces of the thighs may be in contact; moving medially from the arm across the chest surface brings you to the sternum.</td>
</tr>
<tr>
<td>Lateral</td>
<td>Away from the body's longitudinal axis; away from the midsagittal plane</td>
<td>The thigh articulates with the lateral surface of the pelvis; moving laterally from the nose brings you to the cheeks.</td>
</tr>
<tr>
<td>Proximal</td>
<td>Toward an attached base</td>
<td>The thigh is proximal to the foot; moving proximally from the wrist brings you to the elbow.</td>
</tr>
<tr>
<td>Distal</td>
<td>Away from an attached base</td>
<td>The fingers are distal to the wrist; moving distally from the elbow brings you to the wrist.</td>
</tr>
<tr>
<td>Superficial</td>
<td>At, near, or relatively close to the body surface</td>
<td>The skin is superficial to underlying structures.</td>
</tr>
<tr>
<td>Deep</td>
<td>Farther from the body surface</td>
<td>The bone of the thigh is deep to the surrounding skeletal muscles.</td>
</tr>
</tbody>
</table>
BODY PLANES

- Sagittal
 - Lengthwise, front to back, divides body into left and right sides
 - Midsagittal → Sagittal section in middle

- Coronal/Frontal
 - Lengthwise, side to side, divides body into anterior and posterior portions
 - Frontal plane

- Transverse
 - Crosswise, divides body or parts into upper and lower parts
 - Horizontal plane
<table>
<thead>
<tr>
<th>Orientation of Plane</th>
<th>Plane</th>
<th>Directional Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpendicular to long axis</td>
<td>Transverse or</td>
<td>Transversely or</td>
<td>A transverse, or horizontal, section separates superior and inferior portions of the body.</td>
</tr>
<tr>
<td></td>
<td>horizontal</td>
<td>horizontally</td>
<td></td>
</tr>
<tr>
<td>Parallel to long axis</td>
<td>Sagittal</td>
<td>Sagittally</td>
<td>A sagittal section separates right and left portions. You examine a sagittal section, but you section sagittally.</td>
</tr>
<tr>
<td></td>
<td>Midsagittal</td>
<td></td>
<td>In a midsagittal section, the plane passes through the midline, dividing the body in half and separating the right and left sides.</td>
</tr>
<tr>
<td></td>
<td>Parasagittal</td>
<td></td>
<td>A parasagittal section misses the midline, separating right and left portions of unequal size.</td>
</tr>
<tr>
<td></td>
<td>Frontal or coronal</td>
<td>Frontally or coronally</td>
<td>A frontal, or coronal, section separates anterior and posterior portions of the body; coronal usually refers to sections passing through the skull.</td>
</tr>
</tbody>
</table>
ANATOMICAL POSITION/
BILATERAL SYMMETRY

- Anatomical Position
 - Erect
 - Palms, head and feet forward

- Bilateral Symmetry
 - Right and left sides are mirror images

- Ipsilateral
 - Same side

- Contralateral
 - Opposite side
BODY CAVITIES

- Posterior/Dorsal (back)
 - Cranial
 - Spinal
- Anterior/Ventral (front)
 - Thoracic
 - Mediastinum
 - Pleural
 - Abdominopelvic
 - Abdominal
 - Pelvic
BODY CAVITY LININGS

- Parietal
 - Wall of a body cavity or lining membrane that covers the surface
 - *Parietal Peritoneum*
 - Membrane lining the inside of the abdominal cavity

- Visceral
 - Thin membrane that covers the organs within a cavity
 - *Visceral Peritoneum*
 - Membrane that covers the organs within the abdominal cavity
FIGURE 1-12 Body Cavities. (a) The muscular diaphragm divides the ventral body cavity into a superior thoracic (chest) cavity and an inferior abdominopelvic cavity. The pericardial cavity is inside the chest cavity. (b) The heart is suspended within the pericardial cavity like a fist pushed into a balloon. The attachment site, corresponding to the wrist of the hand, lies at the connection between the heart and major blood vessels. (c) An anterior view of, and (d) a transverse section through, the ventral body cavity, showing the central location of the pericardial cavity within the chest cavity. The sectional plane shows how the mediastinum divides the thoracic cavity into two pleural cavities.
Ventral Body Cavity (Coelom)

- Provides protection
- Allows organ movement
- Lining prevents friction

Separated by diaphragm into:

Thoracic Cavity
- Surrounded by chest wall and diaphragm

- Right Pleural Cavity
 - Surrounds right lung

- Mediastinum
 - Contains the trachea, esophagus, and major vessels
 - Also contains Pericardial Cavity
 - Surrounds the heart

- Left Pleural Cavity
 - Surrounds left lung

Abdominopelvic Cavity
- Contains the peritoneal cavity
 - Includes the Abdominal Cavity
 - Contains many digestive glands and organs
 - Contains urinary bladder, reproductive organs, last portion of digestive tract

Pelvic Cavity
(a) **Integumentary system**
Forms the external body covering; protects deeper tissue from injury; synthesizes vitamin D; location of cutaneous (pain, pressure, etc.) receptors; and sweat and oil glands.

(b) **Skeletal system**
Protects and supports body organs; provides a framework the muscles use to cause movement; blood cells are formed within bones; stores minerals.

(c) **Muscular system**
Allows manipulation of the environment, locomotion, and facial expression; maintains posture; produces heat.
(d) Nervous system
Fast-acting control system of the body; responds to internal and external changes by activating appropriate muscles and glands.

(e) Endocrine system
Glands secrete hormones that regulate processes such as growth, reproduction, and nutrient use (metabolism) by body cells.

(f) Cardiovascular system
Blood vessels transport blood which carries oxygen, carbon dioxide, nutrients, wastes, etc.; the heart pumps blood.
(g) Lymphatic system
Picks up fluid leaked from blood vessels and returns it to blood; disposes of debris in the lymphatic stream; houses white blood cells involved in immunity.

(h) Respiratory system
Keeps blood constantly supplied with oxygen and removes carbon dioxide; the gaseous exchanges occur through the walls of the air sacs of the lungs.

(i) Digestive system
Breaks down food into absorbable units that enter the blood for distribution to body cells; indigestible food stuffs are eliminated as feces.
(j) Urinary system
Eliminates nitrogenous wastes from the body; regulates water, electrolyte, and acid-base balance of the blood.

(k) Male reproductive system
(l) Female reproductive system
Overall function of the reproductive system is production of offspring. Testes produce sperm and male sex hormone; ducts and glands aid in delivery of viable sperm to the female reproductive tract. Ovaries produce eggs and female sex hormones; remaining structures serve as sites for fertilization and development of the fetus. Mammary glands of female breast produce milk to nourish the newborn.
ABDOMINOPELVIC REGIONS – 4 QUADRANTS

- Doctors divide torso into quadrants to describe the site of pain and/or internal pathology
 1. Right upper quadrant (RUQ)
 2. Left upper quadrant (LUQ)
 3. Right lower quadrant (RLQ)
 4. Left lower quadrant (LLQ)
ABDOMINAL REGIONS – SUPERFICIAL ORGANS

1. Right Hypochondriac → Right lobe of liver, gallbladder
2. Epigastric → Right and left lobes of liver, stomach
3. Left Hypochondriac → Stomach, large intestine
4. Right Lumbar → Large and small intestine
5. Umbilical → Transverse colon, small intestine
6. Left Lumbar → Small intestine, colon
7. Right Iliac → Cecum, small intestine
8. Hypogastric → Small intestine, bladder, appendix
9. Left Iliac → Colon, small intestine
LEVELS OF ORGANIZATION

1. Atom (smallest)
2. Molecule
3. Macromolecule
4. Cell
5. Tissue
6. Organ
7. Organ System
8. Organism (largest)
LEVELS OF ORGANIZATION

1. Chemical (Atoms \rightarrow Molecules \rightarrow Macromolecules)
 - Basis for life
 - More than 100 different atoms (chemical building blocks of nature)

2. Organelle
 - Structure made of molecules organized so that is can perform a certain function
 - Cannot survive outside the cell
 - “Tiny organs” that allow each cell to live

3. Cellular
 - Cells \rightarrow smallest and most numerous structural units that possess and exhibit the basic characteristics of living matter
 - 150 lb adult = 1×10^{14} cells (100 trillion)
 - Membrane, nucleus, cytoplasm, organelles
 - Cells specialize/differentiate to perform unique functions
4. Tissue
- Group of similar cells that develop together from the same part of the embryo
- Specialized to perform certain functions
- Surrounded by varying amounts and kinds of nonliving, intercellular substances, or matrix
- Four major tissues:
 1. Epithelial
 2. Connective
 3. Muscle
 4. Nervous

5. Organ
- Structure made up of several different kinds of tissues to perform a certain function
- Each one has a unique shape, size, appearance, and placement in the body
- Identified by tissue pattern that it forms
6. System
 • Most complex organizational unit of the body
 • Involves varying numbers and kinds of organs to perform complex functions
 • 11 major systems

7. Organism
 • Interactive structures able to survive in hostile environments
 • Permit homeostasis

Atoms → Molecules → Macromolecules → Organelles → Cells → Tissues → Organs → Organ Systems → Organism
CHARACTERISTICS OF LIFE

1. Responsiveness
 - Permits an organism to sense, monitor, and respond to changes in its external environment
 - Highly developed in nerve and muscle cells

2. Conductivity
 - Capacity of living cells and tissues to selectively transmit or propagate a wave of excitation from one point to another within the body
 - Highly developed in nerve and muscle cells

3. Growth
 - Normal increase in size or number of cells
 - Produces an increase in size (person, organ, part)
 - Little change in the shape
CHARACTERISTICS OF LIFE

4. Respiration
 - Involves the process in absorption, transport, utilization, or exchange of respiratory gases between an organism and its environment
 - Internal vs. external

5. Digestion
 - Complex food products are broken down into simpler substances that can be absorbed and used by the organism

6. Absorption
 - Movement of digested nutrients through the wall of the digestive tube and into body fluids for transport to cells

7. Secretion
 - Production and delivery of specialized substances (digestive juices, hormones) for diverse body functions
CHARACTERISTICS OF LIFE

8. Excretion
 - Removal of wastes produced during body functions (breakdown and use of nutrients in the cell)

9. Circulation
 - Movement of body fluids and many other substances (nutrients, hormones, waste products) from one body area to another

10. Reproduction
 - Formation of new individual and new cells (cell division)
 - Permits growth, wound repair, and replacement of dead/aging cells

11. Metabolism
 - Describes the various processes by which life is made possible
 - Breakdown of nutrients
 - Produce energy
 - Transform one material into another
 - Required to make complex compounds out of simple compounds
HOMEOSTASIS

- A relatively constant state maintained by the body
- Ability of the body to maintain its internal environment (cellular environment) as the external environment constantly changes
 - Internal environment = body temperature, pH level, glucose level
 - External environment = weather, fluid surrounding cells
- Every regulatory mechanism of the body exists to maintain homeostasis of the body’s internal fluid environment
 - Regulatory mechanisms control homeostasis
HOMEOSTASIS

- Two general mechanisms are involved in homeostatic regulation:
 1. Autoregulation
 - Intrinsic Regulation
 - A cell, tissue, organ, or organ system adjusts automatically in response to some environmental change
 - Example – oxygen decreases → cells release chemicals → dilate blood vessels
 2. Extrinsic Regulation
 - Nervous system or endocrine system control or adjust the activities of many systems
 - Example – exercise → nervous system increases heart rate and nervous system reduces blood flow to less active organs like the digestive system
More on extrinsic regulation:

- Nervous system directs rapid, short-term and very specific responses, such as a hand on a hot stove
- Endocrine system releases chemical messengers, called hormones, that affect tissues and organs throughout the body
- Responses may not be immediately apparent, but may persist for days or weeks
 - Example – regulation of blood volume and composition (starvation)
- Endocrine system plays a major role in growth and development
HOMEOSTASIS

- Feedback Control Loop
 - Highly complex and integrated communication control system in order to accomplish self-regulation
 - Examples: blood/carbon dioxide level, temperature, heart rate, sleep cycle, thirst

- Homeostatic regulatory mechanism consists of 4 parts:
 1. Receptor
 - Sensor that is sensitive to a particular environmental change or *stimulus*
 2. Control Center or Integration Center
 - Receives and processes the information supplied by the receptor
 3. Effector
 - A cell or organ that responds to the commands of the control center and whose activity either opposes or enhances the stimulus
 4. Feedback
NEGATIVE FEEDBACK

- **Inhibitor**
 - Opposes change by creating response opposite in direction of initial disturbance
 - Example:
 - Change = drop in temperature
 - Response = heat production
 - Initial disturbance = temperature falls below normal set point
 - Stabilizes physiological variables
 - Maintain constant internal environment
 - Examples:
 - Goosebumps
 - Sweating
NEGATIVE FEEDBACK

HOMEOSTASIS
Normal body temperature

STIMULUS:
Rising body temperature

RECEPTORS
Temperature sensors in skin and hypothalamus

CONTROL CENTER
Thermoregulatory center in hypothalamus

RESPONSE:
Increased heat loss through evaporation
Increased heat loss through radiation

EFFECTORS
Sweat glands in skin increase secretion
Blood vessels in skin dilate

Information affects

Normal temperature disturbed

Normal temperature restored

Body temperature (°C)

Time

(b)
• **Stimulatory**
• Amplifies/reinforces change which can be harmful or disastrous
• Causes instability and disrupts homeostasis
 • Example – Continual temperature increase
• Examples:
 • Sneezing
 • Birth of baby
 • Immune response to infection
 • Blood clot
Positive Feedback: Blood Clotting. Positive feedback loops are important in accelerating processes that must proceed to completion rapidly. In this example, positive feedback accelerates the clotting process until a blood clot forms and stops the bleeding.